A Last-Step Regression Algorithm for Non-Stationary Online Learning

نویسندگان

  • Edward Moroshko
  • Koby Crammer
چکیده

The goal of a learner in standard online learning is to maintain an average loss close to the loss of the best-performing single function in some class. In many real-world problems, such as rating or ranking items, there is no single best target function during the runtime of the algorithm, instead the best (local) target function is drifting over time. We develop a novel last-step minmax optimal algorithm in context of a drift. We analyze the algorithm in the worst-case regret framework and show that it maintains an average loss close to that of the best slowly changing sequence of linear functions, as long as the total of drift is sublinear. In some situations, our bound improves over existing bounds, and additionally the algorithm suffers logarithmic regret when there is no drift. We also build on the H∞ filter and its bound, and develop and analyze a second algorithm for drifting setting. Synthetic simulations demonstrate the advantages of our algorithms in a worst-case constant drift setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-order non-stationary online learning for regression

The goal of a learner, in standard online learning, is to have the cumulative loss not much larger compared with the best-performing function from some fixed class. Numerous algorithms were shown to have this gap arbitrarily close to zero, compared with the best function that is chosen off-line. Nevertheless, many real-world applications, such as adaptive filtering, are non-stationary in nature...

متن کامل

On the Use of Non-Stationary Strategies for Solving Two-Player Zero-Sum Markov Games

The main contribution of this paper consists in extending several non-stationary Reinforcement Learning (RL) algorithms and their theoretical guarantees to the case of γdiscounted zero-sum Markov Games (MGs). As in the case of Markov Decision Processes (MDPs), non-stationary algorithms are shown to exhibit better performance bounds compared to their stationary counterparts. The obtained bounds ...

متن کامل

Re-adapting the Regularization of Weights for Non-stationary Regression

The goal of a learner in standard online learning is to have the cumulative loss not much larger compared with the best-performing prediction-function from some fixed class. Numerous algorithms were shown to have this gap arbitrarily close to zero compared with the best function that is chosen off-line. Nevertheless, many real-world applications (such as adaptive filtering) are nonstationary in...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013